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Most existing methods are limited in one or more of these requirements, and recent developments in

the CRBC procedure (as originally presented by Hagstrom and Warburton in 2009), have made the

technique an attractive candidate for implementation in multi-purpose solvers. In phase-I of this project

we implemented and improved upon many aspects of this method, particularly in light of the needs of

high order accurate Maxwell equations solvers (based on the discontinuous Galerkin method). Error

bounds were computed and demonstrated for a number of cases. We continue in the second phase of

this project to improve upon the robustness of this method, as we develop a software platform which

shall be its flagship (and open source) implementation. In this first quarterly report we present initial

progress to this end, showing recent mathematical developments, project coordination plans and some

results from our initial experience with MEEP.
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1 Abstract

In this project we aim to construct a high fidelity boundary condition module for Maxwell’s equations
that can be interfaced with major time-domain electromagnetics solver systems. There is ample need
in the EM modeling community for reliable and stable far field boundary conditions of high accuracy.
Most existing methods are limited in one or more of these requirements, and recent developments in
the CRBC procedure (as originally presented by Hagstrom and Warburton in 2009), have made the
technique an attractive candidate for implementation in multi-purpose solvers. In phase-I of this project
we implemented and improved upon many aspects of this method, particularly in light of the needs of
high order accurate Maxwell equations solvers (based on the discontinuous Galerkin method). Error
bounds were computed and demonstrated for a number of cases. We continue in the second phase of
this project to improve upon the robustness of this method, as we develop a software platform which
shall be its flagship (and open source) implementation. In this first quarterly report we present initial
progress to this end, showing recent mathematical developments, project coordination plans and some
results from our initial experience with MEEP.
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2 Introduction

In this project, HyPerComp is collaborating with Prof. Thomas Hagstrom and his research group at
the Southern Methodist University (SMU). Roles of the two organizations are very broadly divided
into mathematical method development (led by SMU) and implementation, software development and
maturation (led by HyPerComp). The project is coordinated via a series of in-person and telephone
meetings. As of May 17, 2013 we have been conducting weekly telephone meetings. Two students, John
Lagrone and Fritz Juhnke have been included in the team and have been actively participating in the
work so far.

Tasks: The following is a list of tasks to be performed in this project.

1. Project Formulation

2. Software Development

3. Verification Validation

4. Coupling

5. Efficiency Testing

6. Release of software

7. Documentation

8. Sustainability Plan

9. User Support

At present, we are working on a refined formulation of the CRBC method and testing it in sample
problems. Primary concerns pertaining to method stability at corners, particularly in 3D are being
addressed. CRBC implementations in finite difference schemes, DG (in FORTRAN as well as in MAT-
LAB) are available from prior research in this project, for testing. We hope to host a telephone meeting
with our project manager from the Army in July, coinciding with Prof. Hagstrom’s visit to HyPerComp.

We are presently aiming to integrate the CRBC module with the following codes:

• HDphysics from HyPerComp, a high order DG based solver

• MEEP from MIT, an open source FDTD code

• cgmx part of “Overture” suite of simulation codes from LLNL - high order finite differences,
second order PDEs

• CLAWPACK a finite difference suite of solvers from U.Washington

Students from SMU shall initially focus on an FDTD implementation with MEEP and begin to
identify software needs. We are in the process of developing software requirements for each of the systems
mentioned above, so that we can outline a common implementation of the method and programming
techniques. This shall be discussed in the forthcoming report.
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3 CRBCs and Corner Conditions for the TM Maxwell System

Consider the TM Maxwell system:

∂Hx

∂t
+

1

µ

∂Ez

∂y
= 0 (1)

∂Hy

∂t
−

1

µ

∂Ez

∂x
= 0 (2)

∂Ez

∂t
−

1

ε

∂Hy

∂x
+

1

ε

∂Hx

∂y
= 0 (3)

and set c = 1
√
εµ

.

CRBC on an arbitrary edge

Consider a portion of the radiation boundary with unit normal n pointing outward from the compu-
tational domain and unit tangent vector τ :

n = (
nx
ny
) , τ = (

−ny
nx
) . (4)

(Notice we have chosen a specific orientation for simplicity.) Introducing angles φj , φ̄j , j = 1, . . . , P , we
rewrite the Maxwell system in terms of normal and tangential derivatives, ∂

∂n
and ∂

∂τ
and recursively

replace normal derivatives with interpolation operators. For outgoing waves

∂

∂n
≈ −

cosφj

c

∂

∂t
−

sin2 φj

cT cosφj
, (5)

and for incoming waves
∂

∂n
≈

cos φ̄j

c

∂

∂t
+

sin2 φ̄j

cT cos φ̄j
. (6)

Although not necessary, it is convenient to recast the first two equations using the normal and tangential
components of H:

∂

∂t
(nxH

x
+ nyH

y
) +

1

µ

∂Ez

∂τ
= 0 (7)

∂

∂t
(−nyH

x
+ nxH

y
) −

1

µ

∂Ez

∂n
= 0 (8)

Introducing auxiliary variables Hx
j , Hy

j , and Ezj with Hx
0 , Hy

0 , and Ez0 coinciding with the trace of the
solution at the boundary (or in the DG context the boundary state) we solve for j = 1, . . . P

∂

∂t
(−nyH

x
j−1 + nxH

y
j−1) +

cosφj

µc

∂Ezj−1

∂t
+

1

µcT

sin2 φj

cosφj
Ezj−1 = (9)

∂

∂t
(−nyH

x
j + nxH

y
j ) −

cos φ̄j

µc

∂Ezj

∂t
−

1

µcT

sin2 φ̄j

cos φ̄j
Ezj
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∂Ezj−1

∂t
+

cosφj

εc

∂

∂t
(−nyH

x
j−1 + nxH

y
j−1) (10)

+
1

εcT

sin2 φj

cosφj
(−nyH

x
j−1 + nxH

y
j−1) +

1

ε

∂

∂τ
(nxH

x
j−1 + nyH

y
j−1) =

∂Ezj

∂t
−

cos φ̄j

εc

∂

∂t
(−nyH

x
j + nxH

y
j )

−
1

εcT

sin2 φ̄j

cos φ̄j
(−nyH

x
j + nxH

y
j ) +

1

ε

∂

∂τ
(nxH

x
j + nyH

y
j ) ,

and for j = 0, . . . , P
∂

∂t
(nxH

x
j + nyH

y
j ) +

1

µ

∂Ezj

∂τ
= 0. (11)

These are 3P + 1 equations for 3P + 3 unknowns. Two additional equations are obtained first by using
data from the interior for outgoing characteristics and terminating the incoming characteristic recursion.
The system simplifies if we introduce the normal characteristic variables:

R±,j = E
z
j ±

√
µ

ε
(−nyH

x
j + nxH

y
j ) , Hn,j = nxH

x
j + nyH

y
j , (12)

then the recursions take the form

(1 + cosφj)
∂R+,j−1

∂t
+

1

T

sin2 φj

cosφj
R+,j−1 +

1

ε

∂Hn,j−1

∂τ
= (13)

(1 − cos φ̄j)
∂R+,j

∂t
−

1

T

sin2 φ̄j

cos φ̄j
R+,j +

1

ε

∂Hn,j

∂τ
.

(1 − cosφj)
∂R−,j−1

∂t
−

1

T

sin2 φj

cosφj
R−,j−1 +

1

ε

∂Hn,j−1

∂τ
= (14)

(1 + cos φ̄j)
∂R−,j

∂t
+

1

T

sin2 φ̄j

cos φ̄j
R−,j +

1

ε

∂Hn,j

∂τ
.

We then take
∂R−,0

∂t
= (

∂R−,0

∂t
)

interior

, (15)

and solve (14) in increasing j for
∂R−,j
∂t

. The termination condition is

R+,P = 0, (16)

which allows us to solve (13) in decreasing j for
∂R+,j−1
∂t

.

Corner

We now consider the case of two artificial boundaries meeting at a corner point. Let n1 = (n1x, n
1
y)
T be

the unit outward normal for the first boundary and n2 = (n2x, n
2
y)
T be the unit outward normal for the

second. Introduce
γ = n1 ⋅ n2, γ2 < 1.
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Notice that if the angle between the edges is obtuse then γ > 0. Also introduce sj = ±1, j = 1,2 with
sj = 1 if the edge orientation is into the corner and sj = −1 otherwise. We now solve for a doubly-indexed
array of auxiliary variables Ezj,k, Hx

j,k and Hy
j,k which coincide with the corner values of the auxiliary

variables E1,z
k , H1,x

k , H1,y
k when j = 0 and E2,z

j , H2,x
j , H2,y

j when k = 0. Thus the auxiliary variables
with index 0,0 correspond to the corner values of the actual fields. A complete set of equations for the
corner variables is obtained by applying the interpolation conditions to replace all space derivatives.
We do so by solving for ∇W in terms of n1 ⋅ ∇W and n2 ⋅ ∇W where W is any function. This yields

∇W = (1 − γ2)−1(n1 − γn2)(n1 ⋅ ∇W ) (17)

+(1 − γ2)−1(n2 − γn1)(n2 ⋅ ∇W )

To further simplify the formula we use the fact that Rn1R = Rn2R = 1 and find that

1 − γ2 = 1 − (n1xn
2
x + n

1
yn

2
y)

2

= ((n1x)
2
+ (n1y)

2) ((n2x)
2
+ (n2y)

2) − (n1xn
2
x + n

1
yn

2
y)

2

= (n1x)
2
(n2y)

2
+ (n1y)

2
(n2x)

2
− 2n1xn

2
xn

1
yn

2
y

= S2 (18)

where we have introduced
S = n1xn

2
y − n

1
yn

2
x. (19)

Then

(n1 − γn2) = (
n1x − n

1
x(n

2
x)

2 − n1yn
2
yn

2
x

n1y − n
1
xn

2
xn

2
y − n

1
y(n

2
y)

2 )

= (
n1x(n

2
y)

2 − n1yn
2
yn

2
x

n1y(n
2
x)

2 − n1xn
2
xn

2
y
)

= S (
n2y

−n2x
) (20)

Similarly

(1 − γ2)−1(n2 − γn1) =
1

S
(
−n1y
n1x
) . (21)

Thus

∂

∂x
=

1

S
(n2y

∂

∂n1
− n1y

∂

∂n2
) (22)

∂

∂y
=

1

S
(−n2x

∂

∂n1
+ n1x

∂

∂n2
) . (23)

Then all derivatives can be replaced by the interpolation conditions (5)-(6) associated with one of
the edges. We also assume for simplicity that we are using the same angle parameters and orders on
each edge. This is not necessary, but it is what we usually do and assuming it simplifies the notation.

The recursions corresponding to (9) are the easiest to write down. We solve for j = 1, . . . , P ,
k = 0, . . . , P

∂

∂t
(−n2yH

x
j−1,k + n

2
xH

y
j−1,k) +

cosφj

µc

∂Ezj−1,k

∂t
+

1

µcT

sin2 φj

cosφj
Ezj−1,k =

∂

∂t
(−n2yH

x
j,k + n

2
xH

y
j,k) −

cos φ̄j

µc

∂Ezj,k

∂t
−

1

µcT

sin2 φ̄j

cos φ̄j
Ezj,k, (24)
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and for j = 0, . . . , P , k = 1, . . . , P

∂

∂t
(−n1yH

x
j,k−1 + n

1
xH

y
j,k−1) +

cosφk
µc

∂Ezj,k−1

∂t
+

1

µcT

sin2 φk
cosφk

Ezj,k−1 =

∂

∂t
(−n1yH

x
j,k + n

1
xH

y
j,k) −

cos φ̄k
µc

∂Ezj,k

∂t
−

1

µcT

sin2 φ̄k

cos φ̄k
Ezj,k. (25)

Lastly from the (10) we derive a relationship involving both recursions which we impose for j, k =

1, . . . , P . Using (22)-(23) to express the space derivatives using the normals we find

εS
∂Ez

∂t
− n2y

∂Hy

∂n1
+ n1y

∂Hy

∂n2
− n2x

∂Hx

∂n1
+ n1x

∂Hx

∂n2
= 0. (26)

Now replacing the normal derivatives by (5)-(6) we derive:

S
∂

∂t
(Ezj−1,k−1 +E

z
j,k −E

z
j,k−1 −E

z
j−1,k) (27)

+
cosφj

εc

∂

∂t
(−n1x (H

x
j−1,k−1 −H

x
j−1,k) − n

1
y (H

y
j−1,k−1 −H

y
j−1,k))

+
sin2 φj

εcT cosφj
(−n1x (H

x
j−1,k−1 −H

x
j−1,k) − n

1
y (H

y
j−1,k−1 −H

y
j−1,k))

+
cos φ̄j

εc

∂

∂t
(n1x (H

x
j,k −H

x
j,k−1) + n

1
y (H

y
j,k −H

y
j,k−1))

+
sin2 φ̄j

εcT cos φ̄j
(n1x (H

x
j,k −H

x
j,k−1) + n

1
y (H

y
j,k −H

y
j,k−1))

+
cosφk
εc

∂

∂t
(n2x (H

x
j−1,k−1 −H

x
j,k−1) + n

2
y (H

y
j−1,k−1 −H

y
j,k−1))

+
sin2 φk

εcT cosφk
(n2x (H

x
j−1,k−1 −H

x
j,k−1) + n

2
y (H

y
j−1,k−1 −H

y
j,k−1))

+
cos φ̄k
εc

∂

∂t
(−n2x (H

x
j,k −H

x
j−1,k) − n

2
y (H

y
j,k −H

y
j−1,k))

+
sin2 φ̄k

εcT cos φ̄k
(−n2x (H

x
j,k −H

x
j−1,k) − n

2
y (H

y
j,k −H

y
j−1,k)) = 0

We have now written down 2P (P +1)+P 2 = 3P 2+2P equations in 3(P +1)2 = 3P 2+6P +3 variables.
Thus 4P +3 additional equations are required. We first incorporate incoming data from the edges. Here
we define outgoing characteristics (ingoing to the corner) in the tangential directions for each edge.
Then for k = 0, . . . , P set

S1
k = E

z
0,k + s1

√
µ

ε
(n1xH

x
0,k + n

1
yH

y
0,k) . (28)

Then with the correspondence

(Ez0,k,H
x
0,k,H

y
0,k)↔ (E

z
k ,H

x
k ,H

y
k)

edge1 (29)

we can impose

∂S1
k

∂t
= (

∂S1
k

∂t
)

edge1

. (30)

7 of 13



4. MEEP CONTENTS

Similarly for j = 0, . . . , P set

S2
j = E

z
j,0 + s2

√
µ

ε
(n2xH

x
j,0 + n

2
yH

y
j,0) , (31)

and note the correspondence

(Ezj,0,H
x
j,0,H

y
j,0)↔ (E

z
j ,H

x
j ,H

y
j )

edge2 . (32)

Then we can impose

∂S2
j

∂t
= (

∂S2
j

∂t
)

edge2

. (33)

Finally we can impose the termination conditions

R1
+,j,P = 0 j = 0, . . . , P (34)

R2
+,P,k = 0 k = 0, . . . , P.. (35)

These constitute 4(P + 1) = 4P + 4 equations, one more than we can use. We remove an equation by
only imposing the sum of (30) and (33) for j = k = 0.

4 Meep

Meep-1.2 and related supporting software, libctl-3.2.1, harminv, harminv-devel have been installed
in Linux systems. Single CPU build has been tested and verified against the examples posted on the
Meep website. Parallel version has not been tested yet.

In Fedora OS systems, default configure for libctl-3.2.1 will not work, instead, we need to use
./configure LDFLAGS=-lm
to configure the software.

Packages harminv and harminv-devel will be needed for solutions’ Fourier transforms and need
to be installed before compile Meep.

Default configure for Meep-1.2 also failed in our Linux system. It cannot automatically include the
Lapack library when trying to link the software. We need to explicitly add the Lapack library as follows:
./configure LDFLAGS=-llapack prefix=$Meep home
with $Meep home the destination of Meep installation.

Post-processing utility h5utils-1.12.1 is also installed. There are a lot of utilities included in this
package. To manipulate unsteady solution easier, we developed a python script to call h5tovtk utility
and create a series of .vtk file from the big .h5 file. The script is list below

#!/usr/bin/python

import commands

import string

import sys

argc = len(sys.argv)

if argc != 2:

print "usage error, wrong number of arguments"

print "usage example: ./convH5ToVtk.py sq_scatter-hz.h5"
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exit(-1)

#get the final time step

cmd = "h5ls " + sys.argv[argc-1]

h5lso = commands.getoutput(cmd)

h5lso = h5lso.replace("/Inf}", "")

lspace = h5lso.rfind(" ")

tend = int(h5lso[lspace+1:])

print "final time step is: ", tend-1

fileRoot = sys.argv[argc-1]

fileRoot = fileRoot[:len(fileRoot)-3]

defaultVtk = fileRoot+".vtk"

print fileRoot

for i in range(tend):

bigNum = 1000000+i

newVtk = fileRoot+"_"+(str(bigNum))[1:]+".vtk"

cmd1 = "h5tovtk -t " + str(i) + " " + sys.argv[argc-1]

commands.getoutput(cmd1)

cmd2 = "mv " + defaultVtk + " " + newVtk

commands.getoutput(cmd2)

print newVtk + " is ready"

With .vtk files, we can easily use paraview to do more detailed analysis.

Meep code was verified with several examples using the input data provided in the Meep Tutorial
web page. Grid resolution and pml-layer thickness have been studied to check the code accuracy and
pml-layer sensitivity.

Figure 1 gives the solution of Ez 2-D field in a a straight waveguide. The waveguide has ε = 12.
Figure 2 depicts the solution of a 90o bend waveguide solution at t = 79.8,139.8 and 199.8 respectively.
To further check the code capability, a 3D case with a perfect-electric-conductor sphere put at the center
of the domain is calculated. The wavelength is set to λ = 1m, and the source frequency nondimensional
frequency f = 1 (which indicates the real frequency = f ∗ c/λ = 3 × 108 Hz). The domain is set to
10 × 10 × 10, and the radius of the sphere is set to r = 10λ/(2π) = 1.59m. Figure 3 shows the Ez field
distribution at non-dimensional t = 200. For this run, with resolution=20, it takes about 2 hours in an
Intel core-i7 CPU.

In Figure 2 , we computed the field patterns for light propagating around a waveguide bend. The
results are only visually pretty and not quantitatively satisfying. We’d like to know exactly how much
power makes it around the bend, how much is reflected, and how much is radiated away. This is done by
running the example case bend-flux in the Meep example website. The domain size is 16× 32, including
the pml-layers, which we set the thickness to be 1. We follow the instruction in the tutorial, and run
with resolution 10, 20 and 40. Figure 4 depicts the comparison of the case with different resolution. It
can be seen a minimum resolution of 20 is needed.

In addition, we tried different pml thickness with resolution 20. Figure 5 depicts the comparison of
the case with different pml thickness. This is to check the robustness of the radiation BC in Meep code
and see how much we can improve by using CRBC module in this project in the future. Obviously, with
very thin pml, the results oscillate, which is in our expectation. However, when pml thickness increased
to 2, the solution is also far away from the thickness 1 benchmark, which we may need to find out later.
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Figure 1: Electric-field component Ez distribution of straight waveguide field at t = 200

(a) (b) (c)

Figure 2: Electric-field component Ez distribution at of the 90o waveguide field at t = 79.8,139.8 and
199.8.

Figure 3: Electric-field component Ez distribution of a 3D case at t = 200
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Figure 4: Transmission spectrum around a waveguide bend using different grid resolution.
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Figure 5: Transmission spectrum around a waveguide bend using different pml thickness.
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